A New Proof of Semicontinuity by Young Measures and an Approximation Theorem in Orlicz-sobolev Spaces
نویسنده
چکیده
منابع مشابه
Semicontinuity of Vectorial Functionals in Orlicz-sobolev Spaces
We study integral vectorial functionals F(u;) ? Z f(x; u(x); Du(x))dx where f satisses quasi-convexity assumption and its growth is controlled in term of N-functions. We obtain semicontinuity results in the weak * topology of Orlicz-Sobolev spaces.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملSobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope
In this paper we make a survey of some recent developments of the theory of Sobolev spaces W (X, d,m), 1 < q < ∞, in metric measure spaces (X, d,m). In the final part of the paper we provide a new proof of the reflexivity of the Sobolev space based on Γ-convergence; this result extends Cheeger’s work because no Poincaré inequality is needed and the measure-theoretic doubling property is weakene...
متن کامل